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Abstract

Objective. This paper presents a novel approach for addressing the intricate task of diagnosing aortic
valve regurgitation (AR), a valvular disease characterized by blood leakage due to incompetence of the
valve closure. Conventional diagnostic techniques require detailed evaluations of multi-modal clinical
data, frequently resulting in labor-intensive and time-consuming procedures that are vulnerable to
varying subjective assessment of regurgitation severity. Approach. In our research, we introduce the
multi-view video contrastive network, designed to leverage multiple color Doppler imaging inputs for
multi-view video processing. We leverage supervised contrastive learning as a strategic approach to
tackle class imbalance and enhance the effectiveness of our feature representation learning.
Specifically, we introduce a contrastive learning framework to enhance representation learning within
the embedding space through inter-patient and intra-patient contrastive loss terms. Main results. We
conducted extensive experiments using an in-house dataset comprising 250 echocardiography video
series. Our results exhibit a substantial improvement in diagnostic accuracy for AR compared to state-
of-the-art methods in terms of accuracy by 9.60%, precision by 8.67%, recall by 9.01%, and F;-score
by 8.92%. These results emphasize the capacity of our approach to provide a more precise and efficient
method for evaluating the severity of AR. Significance. The proposed model could quickly and
accurately make decisions about the severity of AR, potentially serving as a useful prescreening tool.

1. Introduction

Aortic valve regurgitation (AR) is a complex valvular disease characterized by the retrograde flow of blood
caused by the incompetance of the valve closure. Although this condition appears and impacts in various
complex ways, it demands careful understanding and a strategic approach to diagnosis because it significantly
affects patient health and care management. Particularly in severe instances of AR often require surgical
intervention, such as aortic valve repair or replacement, making the accurate diagnosis of paramount
importance (Otto etal 2021). Thus, ensuring an accurate and timely diagnosis is not merely a procedural
necessity but a critical component in safeguarding patient health, optimizing intervention strategies, and
enhancing post-operative recovery and management. The intricacies of diagnosing AR involve navigating
through its varied manifestations and understanding its pathophysiological underpinnings, thereby making the
diagnostic process both pivotal and challenging in the overarching management of the disease.

© 2024 Institute of Physics and Engineering in Medicine
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The established diagnostic standards, as outlined by the American Heart Association (AHA), involve a
comprehensive analysis of both morphological and functional aspects of the heart valves. This analysis employs a
multitude of imaging modalities, including color Doppler imaging, continuous wave Doppler (CWD), pulse
wave Doppler (PWD), computed tomography (CT), and cardiovascular magnetic resonance (CMR) (Zoghbi
etal 2017). Among these methods, echocardiography stands out as a vital tool that allows cardiologists to
visualize the heart valves and identify potential defects, enabling them to assess valvular function. However,
while transthoracic echocardiography (TTE) is a widely adopted protocol for evaluating suspected valvular
diseases in clinical settings, it presents certain challenges. TTE requires the expertize of highly skilled
cardiologists and is susceptible to inter-user variability. This limitation often leads to variations in assessing the
severity of regurgitation.

Recent efforts to improve the precision and accuracy of aortic regurgitation (AR) diagnosis have led to the
emergence of machine learning techniques. Edward et al (2023) introduced a machine learning approach that relies
ona single systolic frame extracted from color Doppler videos as input to their model. While this approach proves
effective in detecting regurgitation in pediatric patients, it falls short in accurately assessing the severity of aortic
regurgitation due to its sole reliance on selected 2D frame interpretation, which limits its diagnostic capabilities. In
response to this limitation, Cheng et al (2022) implemented a spatiotemporal convolution layer into their model
and devised an aortic valve (AV) regurgitation model using B-mode videos. However, this method depends ona
solitary standard view for video interpretation in order to classify the severity of aortic regurgitation (AR). Such an
approach may not offer sufficient comprehensiveness for clinical practice since diagnosing AR severity typically
incorporates the consideration of multiple views to achieve a comprehensive assessment.

Multi-view convolutional neural networks (MCNNs) aim to combine valuable insights from different
perspectives, allowing for the creation of more complete representations that can lead to a more effective
classifier (Seeland and Méder 2021, Vyas et al 2020, Edwards et al 2023). Marco et al (2021) introduced a
systematic analysis of utilizing 2D rendered multi-view images for 3D object classification with various fusion
methods. However, critical factors such as physics, geometry, and semantics are often shared across all views.
Recent studies have provided evidence that high-quality embeddings can yield strong classification performance
even when there is a limited amount of labeled data available (Chen et al 2023, Tian et al 2020a). Chen et al (2023)
proposed a framework called SimCLR, which generated augmentation-invariant embedding for input images by
maximizing agreement between different augmentations of the same image. Experimental results show that the
representations learned by SimCLR outperform SOTA in classification tasks. Prannay et al (Zhang et al 2022)
expand the self-supervised contrastive methodology approach by effectively incorporating label information
into a supervised contrastive learning (SCL). It facilitates the augmentation of data sharing the same label and
results in the creation of efficient visual representation embeddings. This is achieved through the transformation
of identical instances, resulting in the generation of a more extensive set of positive and negative pairs.

In this paper, we introduce the multi-view video contrastive network (MVCN), which utilizes a video
encoder to capture high-level features and effectively learn a good visual representations by contrastive learning.
We hyphothesize the potential use of SCL to enhance accuracy and exhibit good embedding properties, thereby
enhancing the efficacy of our proposed method (Tian et al 2020b, Zhang et al 2022). To achieve this goal, we
propose a semantically meaningful contrastive learning approach that assesses relevance across various standard
echocardiographic views and among patients with identical levels of severity. To our knowledge, this is the first
approach that uses multi-view video (figure 1) for the accurate assessment of AR severity.

Our contributions can be summarized in three main aspects:

+ We present the MVCN, which is designed to incorporate multi-view videos for the classification of AR severity
using a video feature encoder.

+ We propose a contrastive loss specifically designed for echocaridography, which includes both intra-patient
and inter-patient loss terms, allowing us to learn semantically relevent visual representations in embedding
space.

+ We extensively validate our methods using an in-house dataset, which has been annotated by two
cardiologists. The results shows the remarkable capabilities of our models, outperforming the performance of
state-of-the-art methods.

2. Methods

We propose the MVCN, which comprises three main components: supervised contrastive learning using label
information, a shared pre-trained encoder for feature extraction, and the incorporation of inter-intra
contrastive loss alongside classification loss in the optimization process as in figure 2.
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Apical 3 chamber (A3C) Probe position Apical 5 chamber (A5C)

Figure 1. Acquisition of various color Doppler imaging in standard echocardiographic views from varying probe positions. The white
region of interest (ROI) within the image represents a specific area that has been selected for analysis. The color represents both the
speed and direction of blood flow within the ROI Blood flow towards the probe is visualized in red, while flow away from the probe is

depicted in blue.
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Figure 2. Overall architecture of the proposed method. A supervised contrastive learning to learn representations using a contrastive
loss but uses label information to sample positives and negative pairs. A feature extractor which employs a pre-trained encoder shared
across all input video. The optimization step involves the use of inter-intra contrastive loss in conjunction with classification loss.

2.1. Feature extractor

We employed a pre-trained video vision transformer (ViViT) (Arnab et al 2021) as our shared video encoder, as
transformer-based networks demand a significant volume of training data, and ViViT has been pretrained on a
large dataset. Given input video, the transformer embeds the positional and temporal information. Each
transformer block consists of a layer normalization, multi-head attention layer (Vaswani et al 2017), and multi-
layer perceptron (MLP). Straight forward choices of tokenization is dividing each frames in spatial domain along
with width and height. However, such straightforward choices in generating videos with increasing frames is
actually not feasible due to their high computational complexity.

To address this issues, we employed a Tubelet embedding (Arnab et al 2021) which divides spatio-temporal
tube blocks from the input video with linear projection. Input video dimensions of T x h x w x 3, tublet
tokens size of n, = [%], n, = [%] ,and n,, = [%] are extracted along the temporal, height, and width,
respectively as shown in figure 2, the self-attention mechanism (Dosovitskiy et al 2023) calculated as follows:

T
Attention(Q, K, V) = Softmax( QK )-V, 1)

Nz

where Wy, Wj, and Wy, arelearnable matrices that project the inputs to query, key and value, respectively, and
and d is the output dimension of key and query features. After embedding of each video input, these features are
fed to projection layter which consists of linear projection, batch normalization (Ioffe and Szegedy 2023), and
ReLU activation function (Agarap 2023).

We generates positive and negative pairs on the projected features to learn effective visual representation in
embedding space. This is achieved by learning a good visual representation space where semantically relevant
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Figure 3. [llustration of supervised contrastive learning scheme: transform input video and fed to feature extraction network then fed
to contrastive loss to attract features belonging to a same instance closer, whereas features belonging to different instances are
separated. T (-) indicates augmentation operation.

features are attract and repel each other by contrastive losses. Details of contrastive loss term will be described in
sections 2.2 and 2.3. We concatenate the projected each features from various video input in the classification
layer for classification loss term.

2.2. Intra patient contrastive loss

Our approach draws inspiration from prior supervised contrastive learning (SCL) research (Khosla et al 2023)
which uses a contrastive loss and data augmentation to learn visual representations in embedding space.
Specifically, we group videos belonging to the same severity for augmentation purposes, while maintaining the
separation of augmentations for different severity group. We augment input videos of a same severity are
grouped together and augmentation in different severity are repel together with predefined augmentation. To
mitigate the challenge posed by class imbalance, we strategically increase the frequency of augmentations
applied to the severity group during training.

We defined two augmentations for SCL framework. Firstly, we use Gaussian noise and Poisson noise to
mimic the speckle which is a multiplicative noise in ultrasound image. Secondly, we employ geometrical
transformations, encompassing operations such as rotation (£30°), translation (5%, flipping, and shearing to
simulate the various angles and positions to simulate the various angles and positions.

We define positive and negative pairs as described in equations (2), (3), called intra patient contrastive loss, as
illustrated in figures 3 and 4(a)

{Epos} 1 = iz {9 (xi), D(xj)} @)
{Eintra,neg} L= Jl[izj]{g(xiv)) @(va)}, (3

where & indicates the projection layer which projects input video features to the low dimensional embedding
space. x; indicate input data, i represents severity groups. v indicates types of standard echo view.

2.3. Inter patient contrastive loss

We propose an inter patient contrastive loss, normalized embeddings from the different views are push each
other, as illustrated in figure 3(b). We observe that although various standard video scans the same anatomy and
regurgitation blood flow, visually distinct structures are present in different standard views. Given N training
data, denoteas D = {{x;,, ¥ },—, 1|, we define the negative pairs as follow:

{Einter,neg}: :Jl[kiv]{g(xik)i g(xiv)}: (4)

where @ is the view-dependent decoder which projects input video features to the embedding space. i indicate
patient index and k represent standard input (k = A2CH, A4CH, PSAX, and PLAX view). We demonstrate the
impact of defining pairs in inter contrastive loss table 3.

To optimize intra and inter patient contrastive loss, we employ a mutual information loss, called InfoNCE
(van den Oord eral 2023) for AV severity classification. The InfoNCE loss is defined as follows:
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Non-severe AVS Severe AVS
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PLAX wret—

(a) Intra patient contrastive loss
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(b) Inter patient contrastive loss Repel

Figure 4. [llustration of inter and intra patient contrastive loss. Blue dots represent non-severe, and red represents severe groups. (a)
The intra-patient contrastive loss involves the encoded input view features repelling in different severity groups, while attracting in the
same severity group, and (b) the encoded heterogeneous features repelling each other in latent space.

Z{Z . exp(Sim({Epos})/T)
Lc = —log , . - , 5)
Z{zpos) exp(sim({Epos})/7) + Z{chg} exp(sim({ Eneg})/7)

where 7 denotes the temperature parameter and is empirically set as 0.05.

2.4.Totalloss
Our goal here is to jointly minimize the classification and contrastive losses. One natural is to minimize the
following weighted loss:

min— 3" ALa + (1 = MLc ©)

0 x;€D

where L denotes cross-entropy loss; L, denotes the contrastive loss. A are parameters controlling the relative
weights of losses.
Alternatively, we restrict L, within a certain range and then construct the truncated loss

mini Z ALy + (1 — Mmax (L¢, €c), (6"
x;€D
where ¢c > 0isa user-defined value. Basically, such loss means that if the contrastive loss L, is greater than the
threshold value e, it contributes the total loss and otherwise not. We note that (6") reduce to (6) by setting
éc = 0. Asthereis possibility in (6') that L¢ exceeds ec. To ensure L¢ < ¢ with a high probability, we can
employ the dynamic loss.

. 1 Al
min— » " A Lg + (1 — MKmax(Lc, ), (6"
xi€D
where K denotes the number of epochs. Hence, the weight of the contrastive loss in (6") is getting larger when the
iteration involves. If Lo > ¢, the second partin (6'") will dominate the first part for alarge K. Hence, Lc < e
will be satisfied eventually.

3. Experimental settings

3.1. Dataset

We trained and evaluated our models on a dataset comprising of 183 echocardiography scans from 250 patients
at Massachusetts general hospital (MGH), with the approval of the Institutional Review Board (IRB). Following
the standard clinical protocols, sonographers localized valve regions and view selections. We incorporated four
standard views: the parasternal long axis (PLAX), apical 5 chamber (A5C), apical 3 chamber (A3C), and
parasternal short axis (PSAX) at the aortic valve (AV) level. The selection of these views was based on extensive
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discussions with clinical experts and adhered to the guidelines provided by the American Society of
Echocardiography (ASE).

We set two-step process to create labels from patient data. First, we examine the reports of cardiologists to
label all patients. Subsequently, we have two cardiologists assessed and assigned severity grades to all patients,
ranging from 0.0 to 4.0 in intervals of 0.5, aligning with the severity levels. However, our objective is to develop a
tool for sonographers that enhances the efficiency of patient care and directs attention to more severe cases. To
achieve this, we establish a threshold value to distinguish between severe and non-severe groups in clinical
practice. After reaching an agreement of our clinical champions, we decided to use a threshold of 2.5 to
differentiate between the non-severe and severe groups in our dataset.

In this study, a total of 183 cases which comprised 42 healthy cases and 141 diseased cases. 132(72.1%) were
classified as non-severe cases, while the remaining 51(27.9%) were categorized as severe cases. We excluded 67
echocardiography scans where the quality of the focal view was poor, there was a non-standard view of interest,
or no images were found for our four standard views. All patients underwent scanning using either GE Vingmed
or Philips probes. From a total of 183 samples, we employed stratified random sampling to designate 110 studies
for the training dataset, 10 cases for validation, and 63 for the test dataset. This sampling procedure was iterated
three times for evaluation purposes. Notably, most patients include multiple scans, such as 2 scans for A2C, 3
scans for PSAX, and similarly for PLAX and A5C. During the training process, we adopted a strategy of randomly
selecting one video from one view at each iteration, except in cases where image quality rendered scans non-
interpretable. This approach allowed us to generate additional samples, even when working with a relatively
small dataset.

To eliminate patient information and other irrelevant data, we carried out the extraction of the
echocardiography scan region in the following steps. Our assumption was that pixel intensity fluctuations
occurred exclusively within the confines of the scan region. We proceeded to calculate the standard deviation for
each pixel location across the frames. We then applied a threshold to these images, creating a binary map where
pixel values were set to 0 if they fell below the threshold and 1 if they exceeded the threshold. And we applied
erosion, morphological operation that involves shrinking the white regions in the binary image, to remove small
noise or isolated pixels, and applied dilation operation to help reconnected broken or fragmented regions in
binary image. By applying these erosion and dilation operations sequentially, we aimed to enhance and refine the
features of interest within the binary map for further analysis or processing. Then, Edge detection, especially
canny edge filter, was used to extract image region, and we generate left and right line to cover fan-shaped image
regions.

3.2.Implementation details

The input video is preprocessed by cropping outside of ultrasound scan region and eliminating all patient info.
The preprocessed input dimension is 16 x 3 x 224 x 224 (frame, channel, width, and height), including one
cardiac cycle. We include three augmentation methods including random cropping, flipping, and shearing to
augment input video data during training network. The best model is selected by identifying the epoch with the
best classification accuracy on a validation set. We initialized image encoder with pretrained ViViT model with
tublet size of 2 X 16 X 16 for fast convergence during training. We utilized Adam optimizer with the learning rate
of 102, and the batch size of 5. All experiments were implemented with Pytorch (1.13.0) and trained on A100
(NVIDIA, Santa Clara, CA) with 40 GB memory for 1500 epochs. To evaluate the performance of different
methods, we use accuracy, precision, recall, and F;-score.

4. Experimental results

We conducted an extensive comparison of our method with various state-of-the-art (SOTA) AR classification
methods, including R(2+1)D (Tran et al 2018), which is a spatiotemporal convolution network based on ResNet
(He etal2016). R(2+1)D factorizes the 3D convolutional filter into separate spatial and temporal convolutions,
originally designed for action recognition tasks. It is worth noting that Cheng et al (2022) utilized R(2+1)D for
AR classification within the B-mode A4C view context. We initialized with pretrained weights from the Kinetics-
400 dataset (Kay et al 2017). Additionally, we considered convLSTM (Shi et al 2015), which is based on
convolutional long short-term memory networks, designed to capture spatiotemporal relations for downstream
tasks. Lastly, we evaluated video vision transformer (ViViT) (Arnab et al 2021), a video transformer model that
incorporates a video-based self-attention mechanism for classification tasks. In our study, we made
modifications to the last layer of ViViT to adapt it for AR severity classification.

Table 1 presents a comparative analysis of the results for AR classification tasks. When using a single view
video input, ViViT achieves the best results with an accuracy of 76.0, precision of 79.2, recall of 76.1, and
F;-score of 77.6. The ensemble approach applied to ViViT, which is trained on each of the single views, leads to
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Table 1. Comparison of AR severity classification performance generated from our MVCN and other state-of-the-art
methods. R(2+1)D and ViViT initialized with pre-trained weights. We employed an ensemble approach named
Ensemble ViViT, which integrates the outcomes of four individually trained ViViT models.

Input

- Methods Accuracy Precision Recall F,-score

Single Multi

v ConvLSTM (X Shi et al) 72.7 76.1 73.0 74.5

v R(2+1)D (Tranetal2018) 76.0 79.5 75.4 77.3

v ViViT (Arnab etal 2021) 76.0 79.2 76.1 77.6

v Ensemble ViViT 77.0 81.1 77.1 79.0
v ViViT 77.1 79.5 77.0 78.2
v ViViT + intra contrastive loss 81.4 84.6 80.2 82.3
v ViViT + inter contrastive loss 82.5 85.2 81.2 83.2
v ViViT + inter/intra cross-entropy 82.2 83.9 82.0 82.9
v Proposed 83.3 86.4 82.2 84.2

improvements in accuracy, precision, recall, and F1-score by 1.0, 0.8, 1.0, and 1.3, respectively, when compared
to ViViT trained on a single view (A3C). We also explored the combination of multiple video features for AS
severity classification and achieved remarkable results. Our findings demonstrate that integrating features from
multiple views results in superior classification performance on Doppler image data. Our proposed method
achieves the best results with an accuracy of 83.3, precision of 86.4, recall of 82.2, and F;-score of 84.2. More
specifically, the accuracy for the severe class was 84.6, and for the non-severe class, it was 82.2 for our proposed
method.

5. Ablation study

We conducted ablation studies to explore various critical elements of our MVCN components and their effects
on model performance. This includes (1) the influence of individual components within the contrastive loss
function, (2) the effects of losing partial video input, and (3) designing the inter patient contrastive loss.

5.1. Effectiveness of contrastive learning

We first validate the contribution of key components within our method, i.e. contrastive learning, which
consists of intra and inter patient contrastive loss. With our dedicated designed contrastive loss, our method
consistently outperforms other comparative methods with a significant margin. We have observed notable
enhancements in accuracy by 5.3, precision by 5.6, recall by 4.1, and F, -score by 4.9. It is worth highlighting that
we observed a higher contribution from the inter-contrastive loss, resulting in a higher performance in accuracy
of 3.1, precision of 3.9, recall 0f 2.0, and an F,-score of 2.9 compared to contribution of intra contrastive loss. To
further assess the efficacy of contrastive loss, we conducted a comparison with cross-entropy loss, specifically
applying cross-entropy classification loss for both inter and intra-patient loss. In this evaluation, we observed an
accuracy of 82.2, a precision of 83.9, a recall of 82.0, and an F;-score of 82.9.

Our method has consistently achieved significantly superior results, demonstrated the advantages of
learning semantically relevant information and employed self-supervised learning for AR severity. Our
approach leads to substantial improvements, enhancing accuracy by 6.1, precision by 6.9, recall by 5.2, and
F;-score by 6.0 when compared to the multiple ViViT model.

5.2. Impact of partial video loss on model performance

We analyze the influence of partially missing video data on the model’s performance, considering variations in
echo protocols across different hospitals. In table 2, we deliberately excluded specific views from the input and
evaluated the model’s performance. Our findings clearly indicate that as the number of missing views increased,
the model’s performance suffered. When more than two videos were omitted, the model’s accuracy deteriorated
significantly compared to the single-view ViViT baseline. The accuracy dropped by approximately in terms of
accuracy by 2.22%, precision by 5.29%, recall by 4.79%, and F,-score by 0.99% for missing two inputs, and
5.01%, 7.45% 5.86%, and 1.47% for three input loss.

5.3. Design of inter patient contrastive loss
We conduct ablation experiments to explore the design relationship between pairs, such as positive and negative
pairs within the inter-patient contrastive loss. We compare the model performance on inter patient contrastive

7
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Table 2. Evaluation of performance of MCVN method in the presence of
partial input loss. # missing view indicates missing input number.

# Missing view Accuracy Precision Recall F,-score
One 78.0 80.0 76.7 78.5
Two 74.3 75.0 72.5 76.8
Three 72.2 73.3 71.6 76.5

Table 3. Comparison of model performance with different types for
inter patient contrastive loss.

Type Accuracy Precision Recall F;-score
Positive 79.5 81.2 78.0 80.2
Negative 81.4 84.6 80.2 82.3

as ‘attract’ and ‘repel’ pairs, respectively. Table 3 shows the improvement of negative pairs exceed positive pairs
in terms of accuracy by 1.9, precision by 3.3, recall by 2.1, and F1-score by 2.0.

6. Conclusion

In this research, we introduce an innovative MVCN designed to achieve precise diagnosis of aortic valve
regurgitation using standard echocardiography scan views, including PLAX, PSAX-AV, A3C, and A5C. Our
approach draws inspiration from the diagnostic methods employed by clinicians, who utilize multiple
echocardiogram views to assess the severity of AV regurgitation accurately. Our model has demonstrated
outstanding performance in AR severity classification tasks. Our method holds significant promise as an AR
diagnosis framework that can be applied to various valvular disease for both mitral valve and tricuspid valve.

In clinical implication, our method can provide bedside aid in screening high-risk patients with
regurgitation to identify severe cases that may require intervention. Our method serves as a method for primary
care physicians to identify patients who should be referred to a specialist. The significance of this procedure is
related to the clinical decision workflow of AR diagnosis. Specifically, the current workflow of AR assessment is
one step with limited time involving measurements on echocardiography such as ventricle and atrium size,
motion, speed, and pattern of colored blood flows in Doppler videos from multiple views, then making a
comprehensive decision. On the other hand, the proposed model in this work can make a quick and accurate
decision about the severity condition of AR, potentially useful as a prescreening tool.

Data availability statement

The data cannot be made publicly available upon publication because they contain sensitive personal information.
The data that support the findings of this study are available upon reasonable request from the authors.

Code availability

The code for our paper is available at https: / /github.com /kimsekeun/Assessment-of-Valve-Regurgitation-
Severity-via-Contrastive-Learning-and-Multi-view-Video-Integration.
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