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Abstract
Objective. This paper presents a novel approach for addressing the intricate task of diagnosing aortic
valve regurgitation (AR), a valvular disease characterized by blood leakage due to incompetence of the
valve closure. Conventional diagnostic techniques require detailed evaluations ofmulti-modal clinical
data, frequently resulting in labor-intensive and time-consuming procedures that are vulnerable to
varying subjective assessment of regurgitation severity.Approach. In our research, we introduce the
multi-view video contrastive network, designed to leveragemultiple colorDoppler imaging inputs for
multi-view video processing.We leverage supervised contrastive learning as a strategic approach to
tackle class imbalance and enhance the effectiveness of our feature representation learning.
Specifically, we introduce a contrastive learning framework to enhance representation learningwithin
the embedding space through inter-patient and intra-patient contrastive loss terms.Main results.We
conducted extensive experiments using an in-house dataset comprising 250 echocardiography video
series. Our results exhibit a substantial improvement in diagnostic accuracy for AR compared to state-
of-the-artmethods in terms of accuracy by 9.60%, precision by 8.67%, recall by 9.01%, and F1-score
by 8.92%. These results emphasize the capacity of our approach to provide amore precise and efficient
method for evaluating the severity of AR. Significance. The proposedmodel could quickly and
accuratelymake decisions about the severity of AR, potentially serving as a useful prescreening tool.

1. Introduction

Aortic valve regurgitation (AR) is a complex valvular disease characterized by the retrograde flowof blood
caused by the incompetance of the valve closure. Although this condition appears and impacts in various
complexways, it demands careful understanding and a strategic approach to diagnosis because it significantly
affects patient health and caremanagement. Particularly in severe instances of AR often require surgical
intervention, such as aortic valve repair or replacement,making the accurate diagnosis of paramount
importance (Otto et al 2021). Thus, ensuring an accurate and timely diagnosis is notmerely a procedural
necessity but a critical component in safeguarding patient health, optimizing intervention strategies, and
enhancing post-operative recovery andmanagement. The intricacies of diagnosing AR involve navigating
through its variedmanifestations and understanding its pathophysiological underpinnings, therebymaking the
diagnostic process both pivotal and challenging in the overarchingmanagement of the disease.
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The established diagnostic standards, as outlined by the AmericanHeart Association (AHA), involve a
comprehensive analysis of bothmorphological and functional aspects of the heart valves. This analysis employs a
multitude of imagingmodalities, including colorDoppler imaging, continuouswaveDoppler (CWD), pulse
waveDoppler (PWD), computed tomography (CT), and cardiovascularmagnetic resonance (CMR) (Zoghbi
et al 2017). Among thesemethods, echocardiography stands out as a vital tool that allows cardiologists to
visualize the heart valves and identify potential defects, enabling them to assess valvular function.However,
while transthoracic echocardiography (TTE) is a widely adopted protocol for evaluating suspected valvular
diseases in clinical settings, it presents certain challenges. TTE requires the expertize of highly skilled
cardiologists and is susceptible to inter-user variability. This limitation often leads to variations in assessing the
severity of regurgitation.

Recent efforts to improve the precision andaccuracy of aortic regurgitation (AR)diagnosis have led to the
emergence ofmachine learning techniques. Edward et al (2023) introduced amachine learning approach that relies
on a single systolic frame extracted fromcolorDoppler videos as input to theirmodel.While this approach proves
effective in detecting regurgitation inpediatric patients, it falls short in accurately assessing the severity of aortic
regurgitation due to its sole reliance on selected 2D frame interpretation,which limits its diagnostic capabilities. In
response to this limitation,Cheng et al (2022) implemented a spatiotemporal convolution layer into theirmodel
anddevised an aortic valve (AV) regurgitationmodel usingB-mode videos.However, thismethoddepends ona
solitary standard view for video interpretation inorder to classify the severity of aortic regurgitation (AR). Such an
approachmay not offer sufficient comprehensiveness for clinical practice since diagnosingARseverity typically
incorporates the considerationofmultiple views to achieve a comprehensive assessment.

Multi-view convolutional neural networks (MCNNs) aim to combine valuable insights fromdifferent
perspectives, allowing for the creation ofmore complete representations that can lead to amore effective
classifier (Seeland andMäder 2021, Vyas et al 2020, Edwards et al 2023).Marco et al (2021) introduced a
systematic analysis of utilizing 2D renderedmulti-view images for 3Dobject classificationwith various fusion
methods.However, critical factors such as physics, geometry, and semantics are often shared across all views.
Recent studies have provided evidence that high-quality embeddings can yield strong classification performance
evenwhen there is a limited amount of labeled data available (Chen et al 2023, Tian et al 2020a). Chen et al (2023)
proposed a framework called SimCLR,which generated augmentation-invariant embedding for input images by
maximizing agreement between different augmentations of the same image. Experimental results show that the
representations learned by SimCLRoutperform SOTA in classification tasks. Prannay et al (Zhang et al 2022)
expand the self-supervised contrastivemethodology approach by effectively incorporating label information
into a supervised contrastive learning (SCL). It facilitates the augmentation of data sharing the same label and
results in the creation of efficient visual representation embeddings. This is achieved through the transformation
of identical instances, resulting in the generation of amore extensive set of positive and negative pairs.

In this paper, we introduce themulti-view video contrastive network (MVCN), which utilizes a video
encoder to capture high-level features and effectively learn a good visual representations by contrastive learning.
We hyphothesize the potential use of SCL to enhance accuracy and exhibit good embedding properties, thereby
enhancing the efficacy of our proposedmethod (Tian et al 2020b, Zhang et al 2022). To achieve this goal, we
propose a semanticallymeaningful contrastive learning approach that assesses relevance across various standard
echocardiographic views and among patients with identical levels of severity. To our knowledge, this is thefirst
approach that usesmulti-view video (figure 1) for the accurate assessment of AR severity.

Our contributions can be summarized in threemain aspects:

• Wepresent theMVCN,which is designed to incorporatemulti-view videos for the classification of AR severity
using a video feature encoder.

• Wepropose a contrastive loss specifically designed for echocaridography, which includes both intra-patient
and inter-patient loss terms, allowing us to learn semantically relevent visual representations in embedding
space.

• Weextensively validate ourmethods using an in-house dataset, which has been annotated by two
cardiologists. The results shows the remarkable capabilities of ourmodels, outperforming the performance of
state-of-the-artmethods.

2.Methods

Wepropose theMVCN,which comprises threemain components: supervised contrastive learning using label
information, a shared pre-trained encoder for feature extraction, and the incorporation of inter-intra
contrastive loss alongside classification loss in the optimization process as infigure 2.
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2.1. Feature extractor
Weemployed a pre-trained video vision transformer (ViViT) (Arnab et al 2021) as our shared video encoder, as
transformer-based networks demand a significant volume of training data, andViViT has been pretrained on a
large dataset. Given input video, the transformer embeds the positional and temporal information. Each
transformer block consists of a layer normalization,multi-head attention layer (Vaswani et al 2017), andmulti-
layer perceptron (MLP). Straight forward choices of tokenization is dividing each frames in spatial domain along
withwidth and height.However, such straightforward choices in generating videoswith increasing frames is
actually not feasible due to their high computational complexity.

To address this issues, we employed a Tubelet embedding (Arnab et al 2021)which divides spatio-temporal
tube blocks from the input videowith linear projection. Input video dimensions of ´ ´ ´T h w 3, tublet

tokens size of ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= =n n, ,t
T

t h
H

h
and ⎡⎣ ⎤⎦=nw

W

w
are extracted along the temporal, height, andwidth,

respectively as shown infigure 2, the self-attentionmechanism (Dosovitskiy et al 2023) calculated as follows:

⎜ ⎟
⎛
⎝

⎞
⎠

=( ) · ( )Q K V
QK

d
VAttention , , Softmax , 1

T

whereW W, ,Q k andWV are learnablematrices that project the inputs to query, key and value, respectively, and
and d is the output dimension of key and query features. After embedding of each video input, these features are
fed to projection layter which consists of linear projection, batch normalization (Ioffe and Szegedy 2023), and
ReLU activation function (Agarap 2023).

We generates positive and negative pairs on the projected features to learn effective visual representation in
embedding space. This is achieved by learning a good visual representation space where semantically relevant

Figure 1.Acquisition of various colorDoppler imaging in standard echocardiographic views fromvarying probe positions. Thewhite
region of interest (ROI)within the image represents a specific area that has been selected for analysis. The color represents both the
speed and direction of bloodflowwithin the ROI Bloodflow towards the probe is visualized in red, while flow away from the probe is
depicted in blue.

Figure 2.Overall architecture of the proposedmethod. A supervised contrastive learning to learn representations using a contrastive
loss but uses label information to sample positives and negative pairs. A feature extractor which employs a pre-trained encoder shared
across all input video. The optimization step involves the use of inter-intra contrastive loss in conjunctionwith classification loss.
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features are attract and repel each other by contrastive losses. Details of contrastive loss termwill be described in
sections 2.2 and 2.3.We concatenate the projected each features from various video input in the classification
layer for classification loss term.

2.2. Intra patient contrastive loss
Our approach draws inspiration fromprior supervised contrastive learning (SCL) research (Khosla et al 2023)
which uses a contrastive loss and data augmentation to learn visual representations in embedding space.
Specifically, we group videos belonging to the same severity for augmentation purposes, whilemaintaining the
separation of augmentations for different severity group.We augment input videos of a same severity are
grouped together and augmentation in different severity are repel together with predefined augmentation. To
mitigate the challenge posed by class imbalance, we strategically increase the frequency of augmentations
applied to the severity group during training.

We defined two augmentations for SCL framework. Firstly, we useGaussian noise and Poisson noise to
mimic the speckle which is amultiplicative noise in ultrasound image. Secondly, we employ geometrical
transformations, encompassing operations such as rotation (±30°), translation (±5%),flipping, and shearing to
simulate the various angles and positions to simulate the various angles and positions.

We define positive and negative pairs as described in equations (2), (3), called intra patient contrastive loss, as
illustrated infigures 3 and 4(a)

= Æ Æ={ }∶ { ( ) ( )} ( )[ ]E x x, 2i j iv jvpos

= Æ Æ¹{ }∶ { ( ) ( )} ( )[ ]E x x, , 3i j iv jvintra,neg

whereÆ indicates the projection layer which projects input video features to the lowdimensional embedding
space. xi indicate input data, i represents severity groups. v indicates types of standard echo view.

2.3. Inter patient contrastive loss
Wepropose an inter patient contrastive loss, normalized embeddings from the different views are push each
other, as illustrated infigure 3(b).We observe that although various standard video scans the same anatomy and
regurgitation bloodflow, visually distinct structures are present in different standard views. GivenN training
data, denote as = = ={{ } }D x y, ,iv i v i

N
1

4
1 wedefine the negative pairs as follow:

= Æ Æ¹{ } { ( ) ( )} ( )[ ]E x x: , , 4k v ik ivinter,neg

whereÆ is the view-dependent decoder which projects input video features to the embedding space. i indicate
patient index and k represent standard input (k =A2CH,A4CH, PSAX, and PLAX view).We demonstrate the
impact of defining pairs in inter contrastive loss table 3.

To optimize intra and inter patient contrastive loss, we employ amutual information loss, called InfoNCE
(van denOord et al 2023) for AV severity classification. The InfoNCE loss is defined as follows:

Figure 3. Illustration of supervised contrastive learning scheme: transform input video and fed to feature extraction network then fed
to contrastive loss to attract features belonging to a same instance closer, whereas features belonging to different instances are
separated. (·)T indicates augmentation operation.
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where τ denotes the temperature parameter and is empirically set as 0.05.

2.4. Total loss
Our goal here is to jointlyminimize the classification and contrastive losses. One natural is tominimize the
followingweighted loss:

å l l+ -
q Î

( ) ( )
N

L Lmin
1

1 6
x D

cls C

i

where Lcls denotes cross-entropy loss; Lc denotes the contrastive loss. l are parameters controlling the relative
weights of losses.

Alternatively, we restrict Lc within a certain range and then construct the truncated loss

å l l+ -
q Î

( ) ( ) ( )
N

L Lmin
1

1 max , 6'
x D

cls C C,

i

where  > 0C is a user-defined value. Basically, such lossmeans that if the contrastive loss Lc is greater than the
threshold value  ,C it contributes the total loss and otherwise not.We note that (6') reduce to (6) by setting
 = 0.C As there is possibility in (6') that LC exceeds  .C To ensure <LC C with a high probability, we can
employ the dynamic loss.

å l l+ -
q Î

( ) ( ) ( )
N

L Lmin
1

1 K max , 6''
x D

cls C C,

i

whereK denotes the number of epochs.Hence, theweight of the contrastive loss in (6'') is getting larger when the
iteration involves. If >L ,C C the second part in (6'')will dominate thefirst part for a largeK. Hence, <LC C

will be satisfied eventually.

3. Experimental settings

3.1.Dataset
We trained and evaluated ourmodels on a dataset comprising of 183 echocardiography scans from250 patients
atMassachusetts general hospital (MGH), with the approval of the Institutional ReviewBoard (IRB). Following
the standard clinical protocols, sonographers localized valve regions and view selections.We incorporated four
standard views: the parasternal long axis (PLAX), apical 5 chamber (A5C), apical 3 chamber (A3C), and
parasternal short axis (PSAX) at the aortic valve (AV) level. The selection of these viewswas based on extensive

Figure 4. Illustration of inter and intra patient contrastive loss. Blue dots represent non-severe, and red represents severe groups. (a)
The intra-patient contrastive loss involves the encoded input view features repelling in different severity groups, while attracting in the
same severity group, and (b) the encoded heterogeneous features repelling each other in latent space.
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discussionswith clinical experts and adhered to the guidelines provided by the American Society of
Echocardiography (ASE).

We set two-step process to create labels frompatient data. First, we examine the reports of cardiologists to
label all patients. Subsequently, we have two cardiologists assessed and assigned severity grades to all patients,
ranging from0.0 to 4.0 in intervals of 0.5, aligningwith the severity levels. However, our objective is to develop a
tool for sonographers that enhances the efficiency of patient care and directs attention tomore severe cases. To
achieve this, we establish a threshold value to distinguish between severe and non-severe groups in clinical
practice. After reaching an agreement of our clinical champions, we decided to use a threshold of 2.5 to
differentiate between the non-severe and severe groups in our dataset.

In this study, a total of 183 cases which comprised 42 healthy cases and 141 diseased cases. 132(72.1%)were
classified as non-severe cases, while the remaining 51(27.9%)were categorized as severe cases.We excluded 67
echocardiography scanswhere the quality of the focal viewwas poor, therewas a non-standard view of interest,
or no imageswere found for our four standard views. All patients underwent scanning using either GEVingmed
or Philips probes. From a total of 183 samples, we employed stratified random sampling to designate 110 studies
for the training dataset, 10 cases for validation, and 63 for the test dataset. This sampling procedure was iterated
three times for evaluation purposes. Notably,most patients includemultiple scans, such as 2 scans for A2C, 3
scans for PSAX, and similarly for PLAX andA5C.During the training process, we adopted a strategy of randomly
selecting one video fromone view at each iteration, except in cases where image quality rendered scans non-
interpretable. This approach allowed us to generate additional samples, evenwhenworkingwith a relatively
small dataset.

To eliminate patient information and other irrelevant data, we carried out the extraction of the
echocardiography scan region in the following steps. Our assumptionwas that pixel intensityfluctuations
occurred exclusively within the confines of the scan region.We proceeded to calculate the standard deviation for
each pixel location across the frames.We then applied a threshold to these images, creating a binarymapwhere
pixel valueswere set to 0 if they fell below the threshold and 1 if they exceeded the threshold. Andwe applied
erosion,morphological operation that involves shrinking thewhite regions in the binary image, to remove small
noise or isolated pixels, and applied dilation operation to help reconnected broken or fragmented regions in
binary image. By applying these erosion and dilation operations sequentially, we aimed to enhance and refine the
features of interest within the binarymap for further analysis or processing. Then, Edge detection, especially
canny edge filter, was used to extract image region, andwe generate left and right line to cover fan-shaped image
regions.

3.2. Implementation details
The input video is preprocessed by cropping outside of ultrasound scan region and eliminating all patient info.
The preprocessed input dimension is 16´3´224´224 (frame, channel, width, and height), including one
cardiac cycle.We include three augmentationmethods including random cropping, flipping, and shearing to
augment input video data during training network. The bestmodel is selected by identifying the epochwith the
best classification accuracy on a validation set.We initialized image encoderwith pretrainedViViTmodel with
tublet size of 2´16´16 for fast convergence during training.We utilizedAdamoptimizer with the learning rate
of 10−3, and the batch size of 5. All experiments were implementedwith Pytorch (1.13.0) and trained onA100
(NVIDIA, Santa Clara, CA)with 40GBmemory for 1500 epochs. To evaluate the performance of different
methods, we use accuracy, precision, recall, and F1-score.

4. Experimental results

Weconducted an extensive comparison of ourmethodwith various state-of-the-art (SOTA)AR classification
methods, including R(2+1)D (Tran et al 2018), which is a spatiotemporal convolution network based onResNet
(He et al 2016). R(2+1)D factorizes the 3D convolutional filter into separate spatial and temporal convolutions,
originally designed for action recognition tasks. It is worth noting that Cheng et al (2022) utilized R(2+1)D for
AR classificationwithin the B-modeA4C view context.We initializedwith pretrainedweights from theKinetics-
400 dataset (Kay et al 2017). Additionally, we considered convLSTM (Shi et al 2015), which is based on
convolutional long short-termmemory networks, designed to capture spatiotemporal relations for downstream
tasks. Lastly, we evaluated video vision transformer (ViViT) (Arnab et al 2021), a video transformermodel that
incorporates a video-based self-attentionmechanism for classification tasks. In our study, wemade
modifications to the last layer of ViViT to adapt it for AR severity classification.

Table 1 presents a comparative analysis of the results for AR classification tasks.When using a single view
video input, ViViT achieves the best results with an accuracy of 76.0, precision of 79.2, recall of 76.1, and
F1-score of 77.6. The ensemble approach applied toViViT, which is trained on each of the single views, leads to
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improvements in accuracy, precision, recall, and F1-score by 1.0, 0.8, 1.0, and 1.3, respectively, when compared
toViViT trained on a single view (A3C).We also explored the combination ofmultiple video features for AS
severity classification and achieved remarkable results. Our findings demonstrate that integrating features from
multiple views results in superior classification performance onDoppler image data.Our proposedmethod
achieves the best results with an accuracy of 83.3, precision of 86.4, recall of 82.2, and F1-score of 84.2.More
specifically, the accuracy for the severe class was 84.6, and for the non-severe class, it was 82.2 for our proposed
method.

5. Ablation study

Weconducted ablation studies to explore various critical elements of ourMVCNcomponents and their effects
onmodel performance. This includes (1) the influence of individual components within the contrastive loss
function, (2) the effects of losing partial video input, and (3) designing the inter patient contrastive loss.

5.1. Effectiveness of contrastive learning
Wefirst validate the contribution of key components within ourmethod, i.e. contrastive learning, which
consists of intra and inter patient contrastive loss.With our dedicated designed contrastive loss, ourmethod
consistently outperforms other comparativemethodswith a significantmargin.We have observed notable
enhancements in accuracy by 5.3, precision by 5.6, recall by 4.1, and F1-score by 4.9. It is worth highlighting that
we observed a higher contribution from the inter-contrastive loss, resulting in a higher performance in accuracy
of 3.1, precision of 3.9, recall of 2.0, and an F1-score of 2.9 compared to contribution of intra contrastive loss. To
further assess the efficacy of contrastive loss, we conducted a comparisonwith cross-entropy loss, specifically
applying cross-entropy classification loss for both inter and intra-patient loss. In this evaluation, we observed an
accuracy of 82.2, a precision of 83.9, a recall of 82.0, and an F1-score of 82.9.

Ourmethod has consistently achieved significantly superior results, demonstrated the advantages of
learning semantically relevant information and employed self-supervised learning for AR severity. Our
approach leads to substantial improvements, enhancing accuracy by 6.1, precision by 6.9, recall by 5.2, and
F1-score by 6.0when compared to themultiple ViViTmodel.

5.2. Impact of partial video loss onmodel performance
Weanalyze the influence of partiallymissing video data on themodel’s performance, considering variations in
echo protocols across different hospitals. In table 2, we deliberately excluded specific views from the input and
evaluated themodel’s performance. Ourfindings clearly indicate that as the number ofmissing views increased,
themodel’s performance suffered.Whenmore than two videoswere omitted, themodel’s accuracy deteriorated
significantly compared to the single-viewViViT baseline. The accuracy dropped by approximately in terms of
accuracy by 2.22%, precision by 5.29%, recall by 4.79%, and F1-score by 0.99% formissing two inputs, and
5.01%, 7.45%5.86%, and 1.47% for three input loss.

5.3.Design of inter patient contrastive loss
Weconduct ablation experiments to explore the design relationship between pairs, such as positive and negative
pairs within the inter-patient contrastive loss.We compare themodel performance on inter patient contrastive

Table 1.Comparison of AR severity classification performance generated fromourMVCNand other state-of-the-art
methods. R(2+1)DandViViT initializedwith pre-trainedweights.We employed an ensemble approach named
Ensemble ViViT, which integrates the outcomes of four individually trainedViViTmodels.

Input
Methods Accuracy Precision Recall F1-score

Single Multi

✓ ConvLSTM (XShi et al) 72.7 76.1 73.0 74.5

✓ R(2+1)D (Tran et al 2018) 76.0 79.5 75.4 77.3

✓ ViViT (Arnab et al 2021) 76.0 79.2 76.1 77.6

✓ EnsembleViViT 77.0 81.1 77.1 79.0

✓ ViViT 77.1 79.5 77.0 78.2

✓ ViViT+ intra contrastive loss 81.4 84.6 80.2 82.3

✓ ViViT+ inter contrastive loss 82.5 85.2 81.2 83.2

✓ ViViT+ inter/intra cross-entropy 82.2 83.9 82.0 82.9

✓ Proposed 83.3 86.4 82.2 84.2

7

Phys.Med. Biol. 69 (2024) 045020 SKim et al



as ‘attract’ and ‘repel’ pairs, respectively. Table 3 shows the improvement of negative pairs exceed positive pairs
in terms of accuracy by 1.9, precision by 3.3, recall by 2.1, and F1-score by 2.0.

6. Conclusion

In this research, we introduce an innovativeMVCNdesigned to achieve precise diagnosis of aortic valve
regurgitation using standard echocardiography scan views, including PLAX, PSAX-AV, A3C, andA5C.Our
approach draws inspiration from the diagnosticmethods employed by clinicians, who utilizemultiple
echocardiogram views to assess the severity of AV regurgitation accurately. Ourmodel has demonstrated
outstanding performance inAR severity classification tasks. Ourmethod holds significant promise as anAR
diagnosis framework that can be applied to various valvular disease for bothmitral valve and tricuspid valve.

In clinical implication, ourmethod can provide bedside aid in screening high-risk patients with
regurgitation to identify severe cases thatmay require intervention.Ourmethod serves as amethod for primary
care physicians to identify patients who should be referred to a specialist. The significance of this procedure is
related to the clinical decisionworkflowof ARdiagnosis. Specifically, the current workflowof AR assessment is
one stepwith limited time involvingmeasurements on echocardiography such as ventricle and atrium size,
motion, speed, and pattern of colored bloodflows inDoppler videos frommultiple views, thenmaking a
comprehensive decision. On the other hand, the proposedmodel in this work canmake a quick and accurate
decision about the severity condition of AR, potentially useful as a prescreening tool.
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